Digital workflow and application of PRF and ozone therapy in oral rehabilitation

By Dr Miguel Stanley, Dr Ana Paz, Dr Catarina Rodrigues & Dr Diogo Mendes, Portugal

There are numerous technologies that simplify the daily work, such as intraoral, extroral and face scanners, CBCT (cone-beam computed tomography) with a low radiation dose, and software processing and production, better known as CAD/CAM (computer-aided design/computer-aided manufacturing) which together with new aesthetic materials and prototyping tools (milling machines and 3D printers) is totally transforming dental medicine. This case report has the aim of presenting an example of prosthetic digital workflow, with the integration of several technologies that help us achieve treatment success.

Introduction

The digital revolution has changed the world and dental medicine is no exception. We live in the digital era: we have the materials and techniques that allow us to develop a totally digital workflow, allowing dental medicine to grow to a new level, becoming faster and more efficient, when combined with scientific and clinical knowledge.

Clinical case

In November 2017, a 39-year-old female patient came to an initial appointment at White Clinic owing to tooth pain (tooth #16). A clinical and radiographic examination were performed, including a periapical radiograph, CBCT scan (Carestream 9500, Carestream Dental), and intra- and extraoral photographs (Fig. 1).

In the clinical and radiographic evaluation, it was observed that tooth #16 presented an invasive cervical resorption at the mesiobuccal root. The treatment plan established was dental extraction with immediate implant placement. The tooth had been previously re-treated endodontically and restored with a definitive ceramic crown. Due to the current situation of the tooth, although the protocol in White Clinic is to reserve teeth, it had indication for immediate extraction. Also due to the last time extraction, it was not possible to produce a surgical guide for the implant placement. Therefore, the treatment plan included a surgical phase and a digital prosthetic phase.

The surgical treatment phase started with extraction of tooth #16, followed by excision of the root crest and alveolar cutaneous (Figs. 2a & b). For good disinfection of the alveolus, the ozone therapy (Ozone DTA, Apoza) was applied (Fig. 2c), taking into account the antimicrobial action of ozone, which prevents the development of the inflammatory process, favours cellular recovery and consequently improving the post-operative healing (Fig. 2d). Once the tooth had been disinfectected, the implant bed was prepared with a sequence of drills from the surgical system (AnyRidge Surgical Kit, MegaGen; Fig. 3a). The bone defects were filled with a bone xenograft of porcine origin (Gen-Os, Osseogen; Fig. 3b). Afterwards, bone densification was performed through a sequence of Denasus drills (Denasus Burs, Vendors; Fig. 4a).

This type of drill allows the clinician to perform a bone densification process.

Once the implant bed had been prepared, a 7 × 10 mm implant (AnyRidge) was placed. After placement, the ISQ (Implant Stability Quotient) was measured with a stability meter (Mega IQ, MegaGen), and the value was 72. According to the IQ scale, this represents high stability (Fig. 4b).

Afterwards, a ceramic crown was made with 3D printing (bijou; Fig. 5a). One week after the preparation, the sign of the crown had been finished, and the implant was in function/processing (through scanning), data acquisition (through scanning), data processing (through scan-and-print technology), printing (3D printing) and assembly (biocompatible) (Figs. 5a & b). The information was sent to a milling machine (Amaninn Gimbach) and the crown was milled (Fig. 5c).

One week after the preparation, the definitive crown in monolithic zirconia was placed and the occlusion was tested with T-Scan technology (TekScan, Figs. 5a & e).

Discussion

The main success indicator for dental implants is primary stability, which is one of the prerequisites for achieving osteointegration.1 This is affected by factors such as bone quantity and quality, surgical placement procedure, and implant shape and coating.2 This stability can be measured with a device that analyses the resonance frequency of the implant after its placement. The software converts the received hertz waves to a numerical value called ISQ on a scale ranging from 1 to 100. The manufacturer’s instructions suggest that a stable implant has an ISQ higher than 65 and an unstable implant lower than 50.3 However, these values differ from one author to another.

Nowadays, we have several options that can help us to achieve a successful rehabilitation with implants. One of them is the use of a fibrin membrane rich in platelets (PRF). This has the ability to reduce the healing period and improve bone regeneration. The use of PRF as a covering membrane allows rapid epithelisation of the site surface and represents an effective barrier against the penetration of epithelial cells within the bone defect.4

Once and Aladdinoglu evaluated the impact of implant coating with L-PRF (leukocyte- and platelet-rich fibrin).5 The stability of the implant was measured by ISQ. The use of L-PRF in the implant insertion resulted in statistically significant ISQ values that continuously increased over time. Boora et al reported early bone remodelling around implants coated or not with L-PRF at the insertion.6 Implants coated with L-PRF showed 50% less initial bone loss after both one and three months, respectively.7 Nowadays, centrifugation protocols have been optimised, the lack of speed concept of centrifugation, resulting in A-PRF and i-PRF.8 These new protocols seek to obtain a greater number of platelets, in order to increase the healing capacity, and leukocytes, therefore also increasing the regenerative capacity.9

Furthermore, positive effects on bone regeneration after peri-implant surgery have been observed when PRF is applied. Given its ease of preparation, low cost and biological properties, PRF can be considered as a reliable treatment option.10 Although the application of PRF during implant placement or for the treatment of peri-implant defects is quite recent, several studies have already shown clinical benefits, such as higher ISQ values and marginal bone resorption.11

Another technique that has proven to be an asset in the success of oral rehabilitation with implants is ozone therapy. This ozone-based tool has an antibacterial effect resulting from the oxidative action on cells, damaging the cytoplasmic membranes of certain organisms, such as bacteria, viruses, fungi and parasites; without, however, the ability to damage healthy human cells.12–14 Thus, ozone has the following advantages: accelerates the healing of soft tissues (increases the rate of physiological healing), controls opportunistic infections, reduces scarring time after extraction (forms a pseudomembrane over the alveolus and protects it from physical and mechanical aggression) and aids in bone regeneration.15–18 The literature suggests that several post-extraction socket must be prepared conventionally and disinfectected for ozone for about 40 seconds, followed by placement of the implant. In this way, we avoid infections and improve bone regeneration.19,20 A further study showed that in ozone-treated implants there was regeneration of periodontal cells similar to those around natural teeth.21–27

In modern-digital dentistry, the four basic phases of work are image acquisition (through scanning), data preparation/processing (through CAD/software), production (CAM/systems), and clinical application on patients.28 The dental preparation can...
Philips Sonicare pulses water between teeth for a complete clean you can feel

Developed with dentists for 25 years, Philips Sonicare's 62,000 brush movements per minute break up plaque whilst waves of water sweep it away. It's tough on plaque, gentle on gums. That's why it's caring by design. There's always a way to make life better.

For more information, please contact
Castle General Trading
Tel: +971 4 3328795
cgtdub@emirates.net.ae
be scanned outside the oral cavity, on the plaster model, or inside the oral cavity by an intraoral scanning system.16 Optical impressions have several advantages over conventional impressions. Among them, the most important is the reduction of patient stress and discomfort. Moreover, optical impressions are time-efficient and can simplify clinical procedures for the dentist, especially for complex impressions (in patients with undercuts and/or in oral implantology, when multiple implants are present).6 In addition, optical impressions eliminate plaster models, saving time and space, and allow for better communication with the dental technician. Finally, optical impressions improve communication with patients and are therefore a powerful marketing tool for the modern dental clinic.18 Regarding accuracy as compared with conventional impressions, optical impressions are equally accurate for individual restorations or three- to four-unit bridges on natural teeth and on implants. Conversely, conventional impressions still appear to be the best solution currently for long-span restorations, such as fixed full prostheses on natural teeth and implants with a higher number of prosthetic abutments.16 Significant differences in trueness have been found among different optical impressions. For each scanner, the trueness was higher in a partially edentulous model than in a fully edentulous model.19

Conversely, the disadvantages of using optical impressions are the difficulty in detecting deep margins in prepared teeth and in the case of bleeding, the learning curve, and the purchasing and maintenance costs.17

Nowadays, we also have the possibility to superimpose the information related to the teeth and gingivae, received from the intraoral scan, over the bone-related information acquired with CBCT. It is therefore possible to plan the optimal positioning of implants with software to guide the surgery. Planning data is transferred to a surgical template that can be physically fabricated in various ways and with different materials. This guide will help the surgeon correctly position the implants without needing to raise a flap.18

After obtaining the digital model, we proceed to the preparation of the virtual part through the CAD software that defines the geometry of an object, while CAM programming directs the fabrication process.20 The CAD/CAM process eliminates current conventional processes, such as the melting and subsequent manipulation of the material after the mechanical working of the same. Pieces made by the CAD/CAM process have a more precise fit compared with conventional methods for dental prosthetic manufacture.21

Conclusion

The use of new technologies in dentistry, such as the application of PRF, ozone therapy and intraoral scanners, has contributed significantly to the success of rehabilitation with dental implants, reducing the time for implant placement and for their restoration.6

Editorial note: A list of references can be obtained from the publisher.

This article was originally published in CAD/CAM international magazine of digital dentistry, Issue 3/2018.

Dr. Miguel Stanley
Rua Dr. António Loureiro Borges, ed. 5, 1º Andar Arquiparque Miraflores
1495-131 Algés, Portugal
Phone: +351 21 396 2727
info@whiteclinic.pt

◊
Certificate & Diploma in Clinical Endodontics

From British Academy of Restorative Dentistry

DUBAI دبی 2019-2020

Group 3
Registration Open

Pathway to UK Masters

168 CME & Daily Hands-on

= Group 3 started on 21 March 2019. A delegate could start the programme from Module 2 (19-22 June 2019) and compensate Module 1 with Group 4. As the modules are not required to be completed in a consecutive way, this will not impact the learning experience of the delegates in anyway.

Certificate | 3 Modules | 12 Days

Module 1 | 21-24 March 2019 (4 days) | Fundamental of Endodontics
Programme outline: Introduction to contemporary endodontics. Understanding of instrument design and its effect on prevention of iatrogenic errors.
Hands-on: Hand filing and lateral compaction techniques.

Module 2 | 19-22 June 2019 (4 days) | Aetiology and Diagnosis of Endodontic Disease
Programme outline: Microbiology of endodontic disease and its relationship with the host immune response.
Hands-on: Rotary NiTi and advanced thermoplastic obturation techniques.

Module 3 | 12-15 September 2019 (4 days) | Traumatic Injury, Pain and its Management
Programme outline: Emergency endodontics and diagnosis in depth. Odontogenic and non-odontogenic pain. Diagnosis and management.
Hands-on: Rotary NiTi and thermoplastic obturation techniques.

Diploma | 3 Modules | 12 Days

Module 4 | December 2019 (4 days) | Dental Resorption and Pattern of Tooth Fracture & Implant Prosthodontics
Programme outline: Understanding advanced endodontic problems. Handling endodontic failure alternatives related to implants.
Hands-on: Reciprocating NiTi and Carrier based thermoplastic obturation techniques & Implant prosthetic and surgery on phantom heads

Module 5 | March 2020 (4 days) | Restoration of Endodontically Treated Teeth
Hands-on: Placement of core restorations and post retained restorations.

Module 6 | June 2020 (4 days) | Management of Endodontic Failure
Programme outline: Endodontic retreatment, surgical endodontics.

+971 528423659 | p.mollov@cappmea.com
www.cappmea.com/endo
Revolutionary Technology in Additive Manufacturing – by 3D Systems

By 3D Systems

NextDent™ 5000 by 3D Systems, a high-speed 3D printer – powered by Figure 4™ technology helps dental laboratories and clinics redefine their workflow to achieve improved accuracy, repeatability and productivity with lower total cost of operations. When used in conjunction with the company’s robust portfolio of certified NextDent materials, dental labs and clinics are able to address the broadest range of indications from a single printer available today. This plug-and-play solution integrates with the industry’s state-of-the-art intra-oral scanning and software solutions delivering a much more precise result than available with manual production. The benefits of the NextDent 5000 solution extend to the patient – reducing the time required to produce orthodontic and prosthetic devices, and the number of office visits needed to complete treatment. This end-to-end solution combining materials, technology, software and services will help dental labs and clinics bridge from traditional methods to a digital workflow, revolutionizing their business.

"With 3D Systems’ NextDent solution, dental laboratories and clinics are now able to produce dental devices at dramatically increased speed – up to 4X faster than other available solutions - while reducing material waste and capital equipment expenditures, as well as reliance upon milling centres," said Rik Jacobs, vice president, general manager, dental, 3D Systems. “Benefits also extend to the patient by reducing the time it takes to produce prosthetics and orthodontics, as well as the number of required office visits.”

This new solution is already demonstrating its ability to truly revolutionize the dental workflow. "The NextDent 5000 is the fastest dental 3D printer I’ve ever seen, with accuracy and precision that result in extremely fine detail,” said Adrienne Slevin, director of education and technology, Dental Arts Laboratories. "I’ve also found it very simple to use. The 3D Sprint™ software is so robust - it handles objects that none of my other printers will accept. The post-processing is equally simple and straightforward.”

Dental Arts Laboratories has been able to achieve print speeds more than 4X faster than comparable printers – completing print runs for some indications in as little as 28 minutes. 3D Systems’ 3D Sprint software, which is bundled with the NextDent 5000, provides Dental Arts Laboratories with a complete CAD optimization and print management tool, helping to more efficiently produce dental devices.

The NextDent 5000 is powered by 3D Systems’ proprietary Figure 4™ technology, which facilitates high-speed 3D printing of dental devices and fixtures. The printer is compatible with industry-leading, intra-oral scanning and dental software solutions, delivering more precise results than conventional manual production techniques. This end-to-end digital workflow also provides higher and more predictable uptime, with a significant reduction in risk for the operator.

3D Systems is also providing its new NextDent materials for an unprecedented total of 50 different options. All NextDent materials are biocompatible and CE-certified to cover a broad range of dental applications for lab managers, dental technicians, dental prosthetic technicians and clinical prosthetists and orthodontists.

"As of this week, we’re shipping the NextDent 5000 for Dental. I’m pleased with how it has performed through the testing phases, and that dental labs and clinics are seeing the power of 3D printers redefine digital dentistry," said Vyomesh Joshi, president and chief executive officer, 3D Systems. "With the addition of these printers into practices, labs and clinics of every size to improve their customer service and competitiveness with more accurate dental devices, delivered faster than ever before.

For more information, please contact:

3D Systems
Suite 3204, P.O. Box 28850, Dubai, UAE
Tel: +971 4 443 3853
Email: info@3d-me.com
Web: www.3d-me.com

Why occlusion matters?

By Vivek Gupta, UK

Occlusion is the cornerstone of successful dentistry, however, it is perhaps the most misunderstood subject in dentistry. Why do restorations done with occlusal understanding last the test of time, whilst a lack of occlusal understanding causes catastrophic damage to patients? 90% of the patients have occlusal disease, so learning the Principles of Occlusion and about Occlusal Assessments will allow you, as a dentist, to begin to treat occlusal disease, confidently and competently.

Understanding the language of occlusion and the schools of thought that exist will allow you to fully integrate the 5 principles of occlusion into your daily dentistry.

Knowing the theory of levers will allow delegates to explain clearly and logically to patients that conditions that are present in each patient will be treated accordingly and are informed and educated correctly about occlusal disease. Allowing them to make informed decisions and lessening any risk of disease. Large VH and HV slides, when to treat and when to refer is fundamentally important. Understanding how this works and how these can be used to treat patients will reduce treatment or restoration failure.

Knowing when to use splint therapy, types of splints and duration and protocol of treatment will allow you to provide excellent care for all your patients bringing a whole new area of treatment available for your patients.
Certificate & Diploma in Clinical Implantology

From British Academy of Dental Implantology & British Academy of Restorative Dentistry

Faculty Leads:

Prof. Göran Ude, Sweden
Programme Director of Implantology
Postgraduate Education Faculty of Odontology, Malmo University

Prof. Paul Tipton, UK
Specialist in Prosthodontics
President, British Academy of Restorative Dentistry

Prof. Anna Al-Sayed, Saudi Arabia
B.D.S., M.S., M.Sc., M.C.D.

Prof. Christer Dahlén, Sweden
Specialist Oral & Maxillofacial Surgery, Professor in Oral Surgery and Guided Tissue Regeneration

Dr. Munir Silwadi
UAE
Specialist Prosthodontist and Implantologist

15 Implants & Lab Work Included
Live Treatment Hands-On (40%)
Group 3 Registration Open

DUBAI 2019-2020

Certificate | 3 Modules | 12 Days
Module 1 | 25-28 June 2019 (4 days) | Basics of Implantology
Programme outline: implant market, osseointegration, treatment alternatives, treatment planning and patient selection, basic surgical techniques and protocols. Hands-on training: surgical techniques and medico-legal aspects to implant dentistry.

Module 2 | 31 October - 03 November 2019 (4 days) | Treatment Planning and Surgical Treatment
Programme outline: implant design, radiographic techniques, implant surgery, implant specific treatment planning. Basic practice management.

Module 3 | 22-26 January 2020 (4 days) | Restorative Aspects of Implantology
Programme outline: restorative techniques, prosthetic hands-on training, patient treatment, follow-up and oral hygiene, complications to avoid and treat. In depth practice management.

Diploma | 3 Modules | 12 Days
Module 4 | 16-19 April 2020 (4 days) | Immediate and Early Loading Concepts and Treatment of the Resorbed Jaw
Programme outline: tooth now concept, immediate and early loading concepts from single tooth to fully edentulous patients, severely resorbed jaws, sinus lift and ridge splitting techniques, hands-on training and live patient surgical treatment.

Module 5 | 11-14 June 2020 (4 days) | Medical Compromised Patient and Soft and Hard Tissue Management | Aesthetic and Restorative Challenging Patient
Programme outline: medications related osteonecrosis, GBR techniques, soft tissue management, implant aesthetics, ceramics and implants.

Module 6 | 03-06 September 2020 (4 days) | Rare Complications and Techniques
Programme outline: rare complications, combination implants and teeth, live patient treatment, written and oral examination and case presentations.

+971 528423659 | p.mollov@cappmea.com
www.cappmea.com/implant
Short cut in the digital fast track

By Dr Hyun-Jun Jung and Kyung-Sik Park, Seoul/South Korea

The shape of an anterior restoration significantly influences the symmetry of the gingival contours. Provisional restorations that have proved to be suitable both in terms of their function and aesthetics allow permanent restorations to be precisely manufactured with the help of digital methods.

Unfavourably positioned teeth and/or an asymmetric contour of the soft tissue represent a considerable challenge in the already difficult anterior zone. In order to achieve a natural-looking result, the shape and shade of the restoration have to be suitably matched to the remaining teeth and furthermore the soft tissue needs to be properly conditioned. In many cases, provisional restorations are initially used by the dental team so that the special requirements of the gingiva can be effectively addressed.

Case study
The 35-year-old patient consulted our practice about having defective dental braces removed after three years of orthodontic treatment. He asked us to treat the carious lesions in his teeth and enhance the appearance of his smile. The first aesthetic analysis revealed an unfavourable length-to-width ratio of the anterior teeth (Fig. 1). As a result, the patient wished to have his front teeth lengthened. The upper left canine had to be endodontically treated due to advanced necrosis of the pulp tissue.

Planning
Our plan was to reconstruct the upper anterior teeth. In choosing the most suitable material for the restorations, we had to take into account the fact that the patient enjoyed eating hard nuts. Furthermore, he reported that he had a habit of grinding his teeth at night and clenching his jaws. Consequently, the anterior crowns would have to be not only functional and aesthetic, but also very strong and tough. We planned to use six all-ceramic crowns to optimise the length-to-width ratio (tooth lengthening) and even out the gingival contours. In order to minimize the risk of fracture of the ceramic restorations, we decided to use IPS e.max Press lithium disilicate ceramic, which demonstrates a high toughness of 470 MPa as well as excellent aesthetics. In addition to the monochrome press ingots, this ceramic system includes a polychromatic material (Fig. 2). IPS e.max Press Multi ingots are used to fabricate highly aesthetic monolithic restorations that do not need any characterization. They feature a lifelike progression of the shade and translucency between the dentin and incisal areas.

Manufacturing technique and selection of the materials
In the first step, we performed and the carious lesions were removed. Then the teeth were restored with composite fillings. The front teeth requiring treatment were suitably prepared (Fig. 3) and the provisional crowns were placed (Fig. 4). The right lateral incisor was lengthened. The provisional crowns helped to support the gingival contours and establish a symmetric appearance. Once the desired symmetry of the teeth and gingival tissue was attained, the teeth were prepared for the permanent restorations (Fig. 5) and impressions were taken.

CADCAM processes in the fabrication of restorations
Prior to the removal of the provisional crowns, additional precision impressions were taken. In the laboratory, the data of the preparation models and the provisional crown models was captured using the double scan method. The digital data sets were superimposed on each other.

Clinical treatment
First, endodontic treatment was performed and the carious lesions were removed. Then the teeth were restored with composite fillings. The front teeth requiring treatment were suitably prepared (Fig. 3) and the provisional crowns were placed (Fig. 4). The right lateral incisor was lengthened. The provisional crowns helped to support the gingival contours and establish a symmetric appearance. Once the desired symmetry of the teeth and gingival tissue was attained, the teeth were prepared for the permanent restorations (Fig. 5) and impressions were taken.

The press technique, which involves the use of a full-contour wax-up, offers a quick and uncomplicated method of manufacturing crowns. Moreover, the press technique allows us to reproduce delicate gingival contours with utmost precision. In restorations that are built up...
ZirCAD MT Multi
The most esthetic high-strength, multi-translucent\(^1\) zirconia

\(^1\) Composed of different material classes
The abutment teeth were separated and the margins and contours were adjusted (Figs 6 to 8).

This approach allowed the shape of the provisional crowns to be exactly replicated. We focused on recreating the subgingival contours, which support the oral soft tissue, so that the restorations would not have to be individually adjusted in the dental office. The crowns were milled from a dimensionally stable wax disc.

The pressed restorations can be adjusted as required. For example, if the incisal portion should be more pronounced, the wax pattern is simply moved downward on the investment ring base (max. 2 mm). The preheating, pressing and divestment steps were carried out in the customary way and in line with the instructions of the manufacturer.

The entire treatment process was straightforward and efficient.

Result

One month later, the teeth and gums looked beautiful and healthy without any inflammation (Figs 14 and 15). Digital workflows minimize efforts but maximize aesthetics. If a restoration requires even more individualisation, the incisal area can be built up with IPS e max Press Multi. The presented process shows that the traditional press technique combined with CAD/CAM methods offers a wide variety of benefits and provides a basis for further creative uses involving a combination of these two techniques is only a question of time.

By Dentsply Sirona

Part of creating an optimal workflow involves the ability to reliably plan for variables that differ with each patient. 3D imaging gives the clinician the ability to view anatomical structures not seen in two-dimensional images. The following case study involving a male patient in need of a restoration shows the advantages of using 3D imaging and an integrated digital workflow.

Methods

In this case, an Orthosphy SL 3D from Dentsply Sirona was used for both panoramic and DVT scans. Digital impressions of the patient were taken with a CEREC camera and implant planning took place within the Gaillasse Implant software. For guided surgery, the team used CEREC Guide 3 milled-in-house at their dental laboratory on an inLab MC X5 milling machine.

Case Study

A 52-year-old male patient presented to our practice with gap in the area of teeth 45-47. He wanted this area restored. We used the Orthosphy SL 3D to take a panoramic scan for planning purposes.

The patient opted for a treatment plan involving the insertion of two implants and then an implant-supported bridge. Digital imaging, combining DVT with CEREC optical impressions were used to plan the implant surgery in Gaillasse Implant software. The software creates an implant proposal as well as enables planning of the alignment of the prosthesis. The ability to plan and perform virtual surgery allowed the team to maximise safety and minimise risk. CEREC Guide 2 was chosen in the treatment plan and then milled in our practice to use during surgery.

An additional DVT image was made in the Orthosphy SL 3D Low Dose Mode as a check post-implantation. Hybrid abutments on the base for the final restoration were chosen.

Summary

Reliable planning makes for an efficient treatment while helping to minimize risk. 3D imaging is an important part of creating a solid plan and the integrated digital workflow offered by using the Orthosphy SL along with relevant planning software saves time for the practitioner and is also efficient for the patient by reducing the number of times he/she has to come to the practice.

For more information contact:

Dentsply Sirona
21st Floor, The Bay Gate Tower
Business Bay, Al Safa Street
Dubai, United Arab Emirates
Tel: +971 (0)4 523 0600
Web: www.dentsplysirona.com/en
E-mail: AEA-Marketing@dentsplysirona.com

Reliable planning for an optimal workflow

DIGITAL DENTISTRY

Fig. 13: IPS e.max Press Multi restorations immediately after placement

Fig. 14-15: Result after one month in situ

Fig. 12: The pressed restorations can be adjusted as required. For example, if the incisal portion should be more pronounced, the wax pattern is simply moved downward on the investment ring base (max. 2 mm). The preheating, pressing and divestment steps were carried out in the customary way and in line with the instructions of the manufacturer.